垃圾回收器
GC 分类与性能指标
-
垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商、不同版本的 JVM 来实现。
-
由于 JDK 的版本处于高速迭代过程中,因此 Java 发展至今已经衍生了众多的 GC 版本。
-
从不同角度分析垃圾收集器,可以将GC分为不同的类型。
Java不同版本新特性
- 语法层面:Lambda 表达式、switch、自动拆箱装箱、enum、泛型
- API层面:Stream API、新的日期时间、Optional、String、集合框架
- 底层优化:JVM 优化、GC的变化、元空间、静态域、字符串常量池等
垃圾回收器分类
按线程数分(垃圾回收线程数),可以分为串行垃圾回收器和并行垃圾回收器。
-
串行回收指的是在同一时间段内只允许有一个CPU用于执行垃圾回收操作,此时工作线程被暂停,直至垃圾收集工作结束。
-
在诸如单 CPU 处理器或者较小的应用内存等硬件平台不是特别优越的场合,串行回收器的性能表现可以超过并行回收器和并发回收器。所以,串行回收默认被应用在客户端的 Client 模式下的 JVM 中
-
在并发能力比较强的 CPU 上,并行回收器产生的停顿时间要短于串行回收器
-
-
和串行回收相反,并行收集可以运用多个 CPU 同时执行垃圾回收,因此提升了应用的吞吐量,不过并行回收仍然与串行回收一样,采用独占式,使用了"Stop-the-Worl"机制。
按照工作模式分,可以分为并发式垃圾回收器和独占式垃圾回收器
- 并发式垃圾回收器与应用程序线程交替工作,以尽可能减少应用程序的停顿时间。
- 独占式垃圾回收器(Stop the World)一旦运行,就停止应用程序中的所有用户线程,直到垃圾回收过程完全结束。
按碎片处理方式分,可分为压缩式垃圾回收器和非压缩式垃圾回收器。
- 压缩式垃圾回收器会在回收完成后,对存活对象进行压缩整理,消除回收后的碎片。
- 再分配对象空间使用: 指针碰撞
- 非压缩式的垃圾回收器不进行这步操作,
- 分配对象空间使用: 空闲列表
按工作的内存区间分,又可分为年轻代垃圾回收器和老年代垃圾回收器。
评估 GC 的性能指标
-
吞吐量:运行用户代码的时间占总运行时间的比例
- (总运行时间 = 程序的运行时间 + 内存回收的时间)a/(a+b)
-
垃圾收集开销:吞吐量的补数,垃圾收集所用时间与总运行时间的比例。b/(a+b)
-
暂停时间:执行垃圾收集时,程序的工作线程被暂停的时间。
-
收集频率:相对于应用程序的执行,收集操作发生的频率。
-
内存占用:Java 堆区所占的内存大小。
-
快速:一个对象从诞生到被回收所经历的时间。
-
<吞吐量、暂停时间、内存占用> 这三者共同构成一个“不可能三角”。三者总体的表现会随着技术进步而越来越好。一款优秀的收集器通常最多同时满足其中的两项。
-
这三项里,暂停时间的重要性日益凸显。因为随着硬件发展,内存占用多些越来越能容忍,硬件性能的提升也有助于降低收集器运行时对应用程序的影响,即提高了吞吐量。而内存的扩大,对延迟反而带来负面效果。
-
简单来说,主要抓住两点:
- 吞吐量
- 暂停时间
吞吐量(throughput)
- 吞吐量就是 CPU 用于运行用户代码的时间与 CPU 总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间)
- 比如:虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
- 这种情况下,应用程序能容忍较高的暂停时间,因此,高吞吐量的应用程序有更长的时间基准,快速响应是不必考虑的
- 吞吐量优先,意味着在单位时间内,STW 的时间最短:0.2+0.2=0.4
暂停时间(pause time)
- “暂停时间”是指一个时间段内应用程序线程暂停,让 GC 线程执行的状态。
- 例如,GC 期间100毫秒的暂停时间意味着在这100毫秒期间内没有应用程序线程是活动的
- 暂停时间优先,意味着尽可能让单次 STW 的时间最短:0.1+0.1 + 0.1+ 0.1+ 0.1=0.5,但是总的 GC 时间可能会长
吞吐量 vs 暂停时间
-
高吞吐量较好因为这会让应用程序的最终用户感觉只有应用程序线程在做“生产性”工作。直觉上,吞吐量越高程序运行越快。
-
低暂停时间(低延迟)较好,是从最终用户的角度来看,不管是GC还是其他原因导致一个应用被挂起始终是不好的。这取决于应用程序的类型,有时候甚至短暂的200毫秒暂停都可能打断终端用户体验。因此,具有较低的暂停时间是非常重要的,特别是对于一个交互式应用程序(就是和用户交互比较多的场景)。
-
不幸的是”高吞吐量”和”低暂停时间”是一对相互竞争的目标(矛盾)。
- 因为如果选择以吞吐量优先,那么必然需要降低内存回收的执行频率,但是这样会导致GC需要更长的暂停时间来执行内存回收。
- 相反的,如果选择以低延迟优先为原则,那么为了降低每次执行内存回收时的暂停时间,也只能频繁地执行内存回收,但这又引起了年轻代内存的缩减和导致程序吞吐量的下降。
-
在设计(或使用)GC 算法时,我们必须确定我们的目标:一个 GC 算法只可能针对两个目标之一(即只专注于较大吞吐量或最小暂停时间),或尝试找到一个二者的折衷。
-
现在标准:在最大吞吐量优先的情况下,降低停顿时间
不同的垃圾回收器概述
- 垃圾收集机制是 Java 的招牌能力,极大地提高了开发效率。这当然也是面试的热点。
- 那么,Java 常见的垃圾收集器有哪些?(面试)
垃圾收集器发展史
有了虚拟机,就一定需要收集垃圾的机制,这就是 Garbage Collection,对应的产品我们称为 Garbage Collector。
- 1999年随 JDK1.3.1一起来的是串行方式的 Serial GC,它是第一款 GC。ParNew 垃圾收集器是 Serial 收集器的多线程版本
- 2002年2月26日,Parallel GC 和 Concurrent Mark Sweep GC 跟随 JDK1.4.2 一起发布
- Parallel GC 在 JDK6 之后成为 HotSpot 默认 GC。
- 2012年,在 JDK1.7u4 版本中,G1 可用。
- 2017年,JDK9 中 G1 变成默认的垃圾收集器,以替代 CMS。
- 2018年3月,JDK10 中 G1 垃圾回收器的并行完整垃圾回收,实现并行性来改善最坏情况下的延迟。
- 2018年9月,JDK11 发布。引入 Epsilon 垃圾回收器,又被称为 "No-Op(无操作)“ 回收器。同时,引入 ZGC:可伸缩的低延迟垃圾回收器(Experimental)
- 2019年3月,JDK12 发布。增强 G1,自动返回未用堆内存给操作系统。同时,引入 Shenandoah GC:低停顿时间的 GC(Experimental)。
- 2019年9月,JDK13 发布。增强 ZGC,自动返回未用堆内存给操作系统。
- 2020年3月,JDK14 发布。删除 CMS 垃圾回收器。扩展 ZGC 在 macOS 和 Windows 上的应用
7款经典的垃圾收集器
- 串行回收器:Serial、Serial old
- 并行回收器:ParNew、Parallel Scavenge、Parallel old
- 并发回收器:CMS、G1
-
新生代收集器:Serial、ParNew、Parallel Scavenge;
-
老年代收集器:Serial old、Parallel old、CMS;
-
整堆收集器:G1;
- 两个收集器间有连线,表明它们可以搭配使用:
- Serial/Serial old
- Serial/CMS (JDK9废弃)
- ParNew/Serial Old (JDK9废弃)
- ParNew/CMS
- Parallel Scavenge/Serial Old (预计废弃)
- Parallel Scavenge/Parallel Old
- G1
- 其中 Serial Old 作为 CMS 出现"Concurrent Mode Failure"失败的后备预案。
- (红色虚线)由于维护和兼容性测试的成本,在 JDK 8 时将 Serial + CMS、ParNew + Serial Old 这两个组合声明为废弃(JEP173),并在 JDK9 中完全取消了这些组合的支持(JEP214),即:移除。
- (绿色虚线)JDK14 中:弃用 Parallel Scavenge 和 Serial Old GC 组合(JEP366)
- (青色虚线)JDK14 中:删除 CMS 垃圾回收器(JEP363)
- 为什么要有很多收集器,一个不够吗?因为 Java 的使用场景很多,移动端,服务器等。所以就需要针对不同的场景,提供不同的垃圾收集器,提高垃圾收集的性能。
- 虽然我们会对各个收集器进行比较,但并非为了挑选一个最好的收集器出来。没有一种放之四海皆准、任何场景下都适用的完美收集器存在,更加没有万能的收集器。所以我们选择的只是对具体应用最合适的收集器。
查看默认垃圾收集器
-
-XX:+PrintCommandLineFlags
:查看命令行相关参数(包含使用的垃圾收集器) -
使用命令行指令:
jinfo -flag
相关垃圾回收器参数 进程ID
JDK8
-XX:+PrintCommandLineFlags
命令行查看
jps
jinfo -flag UseParallelGC 进程id
jinfo -flag UseParallelOldGC 进程id
Serial 回收器:串行回收
-
Serial 收集器是最基本、历史最悠久的垃圾收集器了。JDK1.3 之前回收新生代唯一的选择。
-
Serial 收集器作为 HotSpot 中 Client 模式下的默认新生代垃圾收集器。
-
Serial收集器采用复制算法、串行回收和"Stop-the-World"机制的方式执行内存回收。
-
除了年轻代之外,Serial收集器还提供用于执行老年代垃圾收集的 Serial Old 收集器。Serial Old收集器同样也采用了串行回收和"Stop the World"机制,只不过内存回收算法使用的是标记-压缩算法。
- Serial Old 是运行在 Client 模式下默认的老年代的垃圾回收器
- Serial Old 在 Server 模式下主要有两个用途:①与新生代的 Parallel Scavenge 配合使用 ②作为老年代 CMS 收集器的后备垃圾收集方案
这个收集器是一个单线程的收集器,"单线程"的意义:它只会使用一个CPU(串行)或一条收集线程去完成垃圾收集工作。更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束(Stop The World)
Serial 回收器的优势
- 优势:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。
- 运行在 Client 模式下的虚拟机是个不错的选择。
- 在用户的桌面应用场景中,可用内存一般不大(几十MB至一两百MB),可以在较短时间内完成垃圾收集(几十ms至一百多ms),只要不频繁发生,使用串行回收器是可以接受的。
- 在 HotSpot 虚拟机中,使用
-XX:+UseSerialGC
参数可以指定年轻代和老年代都使用串行收集器。- 等价于新生代用 Serial GC,且老年代用 Serial Old GC
总结
- 这种垃圾收集器大家了解,现在已经不用串行的了。而且在限定单核 CPU 才可以用。现在都不是单核的了。
- 对于交互较强的应用而言,这种垃圾收集器是不能接受的。一般在 Java Web 应用程序中是不会采用串行垃圾收集器的。
ParNew 回收器:并行回收
- 如果说 Serial GC 是年轻代中的单线程垃圾收集器,那么 ParNew 收集器则是 Serial 收集器的多线程版本。
- Par 是 Parallel 的缩写,New:只能处理新生代
- ParNew 收集器除了采用并行回收的方式执行内存回收外,两款垃圾收集器之间几乎没有任何区别。ParNew收集器在年轻代中同样也是采用复制算法、"Stop-the-World"机制。
- ParNew 是很多 JVM 运行在 Server 模式下新生代的默认垃圾收集器。
- 对于新生代,回收次数频繁,使用并行方式高效。
- 对于老年代,回收次数少,使用串行方式节省资源。(CPU 并行需要切换线程,串行可以省去切换线程的资源)
ParNew 回收器与 Serial 回收器比较
Q:由于 ParNew 收集器基于并行回收,那么是否可以断定 ParNew 收集器的回收效率在任何场景下都会比 Serial 收集器更高效?
A:不能
- ParNew 收集器运行在多 CPU 的环境下,由于可以充分利用多 CPU、多核心等物理硬件资源优势,可以更快速地完成垃圾收集,提升程序的吞吐量。
- 但是在单个CPU的环境下,ParNew 收集器不比 Serial 收集器更高效。虽然 Serial 收集器是基于串行回收,但是由于 CPU 不需要频繁地做任务切换,因此可以有效避免多线程交互过程中产生的一些额外开销。
- 除 Serial 外,目前只有 ParNew GC 能与 CMS 收集器配合工作
设置 ParNew 垃圾回收器
- 在程序中,开发人员可以通过选项
-XX:+UseParNewGC
手动指定使用ParNew收集器执行内存回收任务。它表示年轻代使用并行收集器,不影响老年代。 -XX:ParallelGCThreads
限制线程数量,默认开启和CPU数据相同的线程数。
Parallel 回收器:吞吐量优先
-
HotSpot 的年轻代中除了拥有 ParNew 收集器是基于并行回收的以外,Parallel Scavenge 收集器同样也采用了复制算法、并行回收和"Stop the World"机制。
-
那么Parallel收集器的出现是否多此一举?
- 和 ParNew 收集器不同,Parallel Scavenge 收集器的目标则是达到一个可控制的吞吐量(Throughput),它也被称为吞吐量优先的垃圾收集器。
- 自适应调节策略也是 Parallel Scavenge 与 ParNew 一个重要区别。(动态调整内存分配情况,以达到一个最优的吞吐量或低延迟)
-
高吞吐量则可以高效率地利用 CPU 时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。因此,常见在服务器环境中使用。例如,那些执行批量处理、订单处理、工资支付、科学计算的应用程序。
-
Parallel 收集器在 JDK1.6 时提供了用于执行老年代垃圾收集的 Parallel Old 收集器,用来代替老年代的 Serial Old 收集器。
-
Parallel Old 收集器采用了标记-压缩算法,但同样也是基于并行回收和"Stop-the-World"机制。
- 在程序吞吐量优先的应用场景中,Parallel 收集器和 Parallel Old 收集器的组合,在 server 模式下的内存回收性能很不错。
- 在 Java8 中,默认是此垃圾收集器。
Parallel 参数设置
-
-XX:+UseParallelGC
手动指定年轻代使用 Parallel 并行收集器执行内存回收任务。 -
-XX:+UseParallelOldGC
:手动指定老年代都是使用并行回收收集器。-
分别适用于新生代和老年代
-
上面两个参数分别适用于新生代和老年代。默认 jdk8 是开启的。默认开启一个,另一个也会被开启。(互相激活)
-
-
-XX:ParallelGCThreads
:设置年轻代并行收集器的线程数。一般地,最好与 CPU 数量相等,以避免过多的线程数影响垃圾收集性能。-
在默认情况下,当 CPU 数量小于8个,ParallelGCThreads 的值等于 CPU 数量。
-
当 CPU 数量大于8个,ParallelGCThreads 的值等于3+[5*CPU_Count]/8]
-
-
-XX:MaxGCPauseMillis
设置垃圾收集器最大停顿时间(即STW的时间)。单位是毫秒。-
为了尽可能地把停顿时间控制在 XX:MaxGCPauseMillis 以内,收集器在工作时会调整 Java 堆大小或者其他一些参数。
-
对于用户来讲,停顿时间越短体验越好。但是在服务器端,我们注重高并发,整体的吞吐量。所以服务器端适合 Parallel,进行控制。
-
该参数使用需谨慎。
-
-
-XX:GCTimeRatio
垃圾收集时间占总时间的比例,即等于 1 / (N+1) ,用于衡量吞吐量的大小。-
取值范围(0, 100)。默认值99,也就是垃圾回收时间占比不超过1。
-
与前一个 -XX:MaxGCPauseMillis 参数有一定矛盾性,STW 暂停时间越长,Radio 参数就容易超过设定的比例。
-
-
-XX:+UseAdaptiveSizePolicy
设置 Parallel Scavenge 收集器具有自适应调节策略 -
在这种模式下,年轻代的大小、Eden 和 Survivor 的比例、晋升老年代的对象年龄等参数会被自动调整,已达到在堆大小、吞吐量和停顿时间之间的平衡点。
-
在手动调优比较困难的场合,可以直接使用这种自适应的方式,仅指定虚拟机的最大堆、目标的吞吐量(GCTimeRatio)和停顿时间(MaxGCPauseMillis),让虚拟机自己完成调优工作。
CMS 回收器:低延迟
-
在JDK1.5时期,Hotspot推出了一款在**强交互应用中(就是和用户打交道的引用)**几乎可认为有划时代意义的垃圾收集器:CMS(Concurrent-Mark-Sweep)收集器,这款收集器是HotSpot虚拟机中第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程同时工作。
-
CMS收集器的关注点是尽可能缩短垃圾收集时用户线程的停顿时间。停顿时间越短(低延迟)就越适合与用户交互的程序,良好的响应速度能提升用户体验。
- 目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
-
CMS 的垃圾收集算法采用标记-清除算法,并且也会"Stop-the-World"
-
不幸的是,CMS 作为老年代的收集器,却无法与 JDK1.4.0 中已经存在的新生代收集器 Parallel Scavenge 配合工作(因为实现的框架不一样,没办法兼容使用),所以在 JDK1.5 中使用 CMS 来收集老年代的时候,新生代只能选择 ParNew 或者 Serial 收集器中的一个。
-
在 G1 出现之前,CMS 使用还是非常广泛的。一直到今天,仍然有很多系统使用 CMS GC。
CMS的工作原理
CMS 整个过程比之前的收集器要复杂,整个过程分为4个主要阶段,即初始标记阶段、并发标记阶段、重新标记阶段和并发清除阶段。(涉及 STW 的阶段主要是:初始标记 和 重新标记)
- 初始标记(Initial-Mark)阶段:在这个阶段中,程序中所有的工作线程都将会因为"Stop-the-World"机制而出现短暂的暂停,这个阶段的主要任务仅仅只是标记出GC Roots能直接关联到的对象。一旦标记完成之后就会恢复之前被暂停的所有应用线程。由于直接关联对象比较小,所以这里的速度非常快。
- 并发标记(Concurrent-Mark)阶段:从 GC Roots 的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行。
- 重新标记(Remark)阶段:由于在并发标记阶段中,程序的工作线程会和垃圾收集线程同时运行或者交叉运行,**因此为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,**这个阶段的停顿时间通常会比初始标记阶段稍长一些,并且也会导致"Stop-the-World"的发生,但也远比并发标记阶段的时间短。
- 并发清除(Concurrent-Sweep)阶段:此阶段清理删除掉标记阶段判断的已经死亡的对象,释放内存空间。由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的
CMS分析
- 尽管CMS收集器采用的是并发回收(非独占式),但是在其初始化标记和再次标记这两个阶段中仍然需要执行“Stop-the-World”机制暂停程序中的工作线程,不过暂停时间并不会太长,因此可以说明目前所有的垃圾收集器都做不到完全不需要“Stop-the-World”,只是尽可能地缩短暂停时间。
- 由于最耗费时间的并发标记与并发清除阶段都不需要暂停工作,所以整体的回收是低停顿的。
- 另外,由于在垃圾收集阶段用户线程没有中断,所以在 CMS 回收过程中,还应该确保应用程序用户线程有足够的内存可用。因此,CMS 收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,而是当堆内存使用率达到某一阈值时,便开始进行回收,以确保应用程序在 CMS 工作过程中依然有足够的空间支持应用程序运行。要是 CMS 运行期间预留的内存无法满足程序需要,就会出现一次**“Concurrent Mode Failure”** 失败,这时虚拟机将启动后备预案:临时启用 Serial old 收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。
- CMS 收集器的垃圾收集算法采用的是标记-清除算法,这意味着每次执行完内存回收后,由于被执行内存回收的无用对象所占用的内存空间极有可能是不连续的一些内存块,不可避免地将会产生一些内存碎片。那么 CMS 在为新对象分配内存空间时,将无法使用指针碰撞(Bump the Pointer)技术,而只能够选择空闲列表(Free List)执行内存分配。
为什么 CMS 不采用标记-压缩算法呢?
答案其实很简答,因为当并发清除的时候,用 Compact 整理内存的话,原来的用户线程使用的内存还怎么用呢?要保证用户线程能继续执行,前提的它运行的资源不受影响嘛。Mark Compact 更适合"stop the world"这种场景下使用
CMS 的优点与弊端
优点
- 并发收集
- 低延迟
弊端
- 会产生内存碎片,导致并发清除后,用户线程可用的空间不足。在无法分配大对象的情况下,不得不提前触发Full GC。
- CMS 收集器对 CPU 资源非常敏感。在并发阶段,它虽然不会导致用户停顿,但是会因为占用了一部分线程而导致应用程序变慢,总吞吐量会降低。
- CMS 收集器无法处理浮动垃圾。可能出现“Concurrent Mode Failure"失败而导致另一次 Full GC 的产生。在并发标记阶段由于程序的工作线程和垃圾收集线程是同时运行或者交叉运行的,**那么在并发标记阶段如果产生新的垃圾对象,CMS 将无法对这些垃圾对象进行标记,最终会导致这些新产生的垃圾对象没有被及时回收,**从而只能在下一次执行 GC 时释放这些之前未被回收的内存空间。
CMS 参数配置
G1 回收器:区域化分代式
-
-XX:+UseConcMarkSweepGC
:手动指定使用CMS收集器执行内存回收任务。开启该参数后会自动将
-XX:+UseParNewGC
打开。即:ParNew(Young区)+ CMS(Old区)+ Serial Old(Old区备选方案)的组合。 -
-XX:CMSInitiatingOccupanyFraction
:设置堆内存使用率的阈值,一旦达到该阈值,便开始进行回收。-
JDK5 及以前版本的默认值为68,即当老年代的空间使用率达到 68% 时,会执行一次 CMS 回收。JDK6 及以上版本默认值为 92%
-
如果内存增长缓慢,则可以设置一个稍大的值,大的阀值可以有效降低CMS的触发频率,减少老年代回收的次数可以较为明显地改善应用程序性能。反之,如果应用程序内存使用率增长很快,则应该降低这个阈值,以避免频繁触发老年代串行收集器。因此通过该选项便可以有效降低 Full GC 的执行次数。
-
区域化内存划片 Region, 整体编为了一些列不连续的内存区域,避免了全内存区的 GC 操作。
核心思想是将整个堆内存区域分成大小相同的子区域(Region),在 JVM 启动时会自动设置这些子区域的大小,
在堆的使用上,G1 并不要求对象的存储一定是物理上连续的只要逻辑上连续即可,每个分区也不会固定地为某个代服务,可以按需在年轻代和老年代之间切换。启动时可以通过参数 -XX:G1 HeapRegionSize=n 可指定分区大小(1MB~32MB, 且必须是2的幂),默认将整堆划分为2048个分区。
大小范围在1MB~32MB, 最多能设置2048个区域,也即能够支持的最大内存为:32MB * 2048 = 65536MB = 64G内存